
The Test Automation Platform as a Service

simplytestify.com© 2017 – All rights reserved

http://blog.simplytestify.com/


© 2017 – All rights reserved

Table of contents
• The testing problem

• What is Test Automation? 

• Test automation 2.0

• The simplyTestify solution

• Automation of cognitive test tasks

• Model/policy based test automation

• Low code test automation

• Contract-based test automation

• Automated testing capability

• Automatic test arbitration

• Test automation as a service

• simplyTestify core architecture

• Conclusion

Annexes

• Unit test of a terminal component

• Unit test of a non-terminal component

• Integration test of a distributed SUT

• Integration test of a distributed SUT (II) 

2



© 2017 – All rights reserved

The testing problem
Always-on world - even non mission-critical IT system become business-critical

Failures in the production stage have strongly adverse business consequences:

catastrophic outcomes, physical injuries, regulation infringements, reputational

damages, liabilities, customer churn, profit losses, competitive disadvantages, time-to-

market delays, and extra labor and equipment costs

Nowadays, systematic and effective test in several points of the DevOps process becomes

mandatory

Manual test is hard, knowledge-intensive, time-consuming, very expensive in labor and

equipment, and often ineffective, inefficient, and error-prone

Test automation is the solution

3



© 2017 – All rights reserved

What is Test Automation?
Test Automation is a buzzword: tools currently available in the QA & Testing market implement at most

the bare mechanization of clerical test tasks

Agile, TDD and BDD methodologies and Continuous Integration and Delivery DevOps processes need

higher levels of test automation

Leading organizations develop complex, custom-built, tailor-made, and ad hoc test systems, carried out

by challenging and expensive software projects borne by highly skilled developers

Resulting home-made test systems are not only very limited in automation (only the clerical test tasks are

mechanized) but also so burdensome, brittle, error-prone, and dear to maintain, configure, deploy,

and operate – often more than the system to be tested - that many customers revert to manual,

outsourced, and offshore testing

Anyway, high code test automation is out of range of small and medium organizations

4



© 2017 – All rights reserved

Test automation 2.0

5

Test generation Test run Test management

2 Autonomous, intelligence-led, robotics,
and low code automated design and
generation of synthetic, context aware,
and focused test scenarios and samples
(inputs and oracles) from models and
policies

Autonomous, intelligence-led, robotics,
and low code automation of the test runs,
with automated configuration and
binding, dynamic intelligent scheduling,
on the fly focused generation, and
evidence-based reactive planning

Fault-tolerant API/scripting invocation
of autonomous test automation
software robots running on a highly
elastic, dependable, secure and
performant platform

1 Mechanized generation of test input
and oracle templates. User manual
drafting of test inputs and oracles

High code configuration and binding of
custom-built test systems. Mechanization
of batches of sequential test execution.
Eye-ball arbitration of SUT responses by
inspection of bulky journals. Manual
reporting

DevOps process invoking custom-built
and unstable test systems without
any guarantee of elasticity,
dependability and performance

0 Manual drafting of test inputs and
oracles

Manual configuration and binding of a
client software. Manual sending of the
test inputs and gathering the SUT
responses. Eye-ball arbitration and
manual reporting

Human workflow for an activity that
uses disputed equipment and is
carried out by scarce human
resources, upon software of uncertain
qualityA

u
to

m
a

ti
o

n
 l

e
v
e

ls

Current QA & 
Testing tools

SIMPLYTESTIFY

Customer challenges generate needs that are not satisfied by the currently 
available technology and can be met only by full Test Automation



© 2017 – All rights reserved

The SIMPLYTESTIFY solution
The use of SIMPLYTESTIFY is 

straightforward, declarative and low-

code

The user

1. deploys the SUT in the distributed

testbed (on-premises, on private,

public, and hybrid cloud);

2. drafts a few declarative artifacts 

(models and policies);

3. implements the SUT Initialization 

API

The SIMPLYTESTIFY robots

• autonomously design and generate 

synthetic test scenarios and data 

sets, 

• run dynamically scheduled test 

sessions, 

• produce and summarize test 

verdicts, and 

• plan and implement multi-session 

test campaigns.

6



© 2017 – All rights reserved

Automation of cognitive test tasks
The tools currently available in the QA & Testing market do not provide any support for the automation of cognitive test tasks

SIMPLYTESTIFY robots automate:

• the derivation of test scenarios from the models and policies

• the design of test inputs with elevated fault exposing potential from the models and policies

• the derivation of the test oracles from the SUT models

• the generation of executable test samples (scenarios’ instances)

• the configuration of the test harness with simulated components (clients, stubs) and intercepting proxies

• the binding of the test harness to the SUT on the distributed testbed

• the arbitration of the SUT responses

• the dynamic prioritization of the test samples, based on probabilistic reasoning and driven by failure search policies and past test
verdicts

• the evidence-based planning of test campaigns, based on probabilistic reasoning and driven by coverage policies, with on-the-fly
generation of new test scenarios/samples

• the reporting of the test sessions

7



© 2017 – All rights reserved

Model/policy based test automation
The user shall supply the native interface and protocol descriptions (e.g. WSDL for SOAP, WADL
or WSDL for REST/XML, OpenAPI/Swagger for REST/JSON ...)

SIMPLYTESTIFY test automation is based on a few additional declarative artifacts (XML format):

Models

• SUT topology - graph of SUT components linked by service dependency wires

• Test harness configuration plan - structural and behavioral model of the simulated upstream
and downstream components (respectively, clients and stubs) and of the intercepting proxies on
the service dependency wires

• Protocol state machines - for each actual (SUT) and virtual (Test harness) component, a
state/transition (event/condition/effect with transfer functions) representation of the allowed
conversations with its upstream ad downstream services

Policies – generation, scheduling, and planning policies

8



© 2017 – All rights reserved

Low code test automation
Low code automation: the only coding effort requested from the user concerns the
(re)initialization procedure for each SUT component

• Each (re)initialization procedure implements the SUT initialization APIs

• The executor/arbiter robot automatically invokes the initialization APIs on each
SUT component: (i) at the start of the test session, and (ii) at the end of each test run

• SIMPLYTESTIFY ensures the repeatability of the test runs by implementing the ETSI*
recommendation that each test run must leave the SUT in its initial state

• The setup of the test system does not require any specific coding effort

9

* European Telecommunication Standard Institute - http://www.etsi.org/



© 2017 – All rights reserved

Contract-based test automation
The user can model pre/post-conditions on stateful SUT components

She shall

• define a state resource (XML infoset) that represents the externally visible
state of the component

• implement a the Contract-Based Test API on the component for
setting/getting the state resource

The executor/arbiter robot automatically invokes these APIs on the SUT
components at particular moments of the test run

• to set the initial component state for the test run

• to get the actual component state for checking whether it meets the
pre/post-conditions

10



© 2017 – All rights reserved

Automated testing capability
The SIMPLYTESTIFY executor/arbiter can handle:

• protocol testing – of the compliance of the actual message with the oracle message type,

• content testing – of the compliance of the actual message content with the oracle
message content,

• contract testing – of the compliance of the actual SUT state with the oracle SUT state,

• fault-tolerance testing – of the component behavior in the presence of the failure of
downstream services (stubs that do not respond),

• non-determinist test scenarios - where asynchronous SUT feedbacks are allowed
arriving in an unspecified order.

N.B.: the features mentioned above are applied to gray-box testing of complex and large-
scale distributed architectures.

11



© 2017 – All rights reserved

Automatic test arbitration
SIMPLYTESTIFY automates the arbitration task

For each test run, the executor/arbiter initializes a compound test verdict, i.e. an array of local

verdicts (one for each expected SUT feedback in the test scenario – actual message or retrieved

state) - all the local verdicts are initialized to none

The test components (clients, stubs, proxies) set the local verdicts for the SUT feedbacks they

arbitrate to

• pass - the SUT feedback matches the oracle

• fail - the SUT feedback mismatches the oracle

The occurrence of a fail local verdict or a timeout ends the test run. The verdicts of the non received

SUT feedbacks remain unchanged (none)

At the end of the test run, the executor/arbiter re-initializes the SUT and returns the compound test

verdict

12



© 2017 – All rights reserved

Test automation as a service
SIMPLYTESTIFY implements

• the reliable invocation of test automation methods via APIs

• the reliable execution of test automation methods by

autonomous robots on a highly elastic, dependable, and

secure cloud infrastructure

SIMPLYTESTIFY enables the swift wrapping of test automation

services in all types of DevOps automated processes:

• automated black-box test of components starting at the

early stages of design and development (shift left testing);

• automated black-box test of partners’ and third-parties’

components (client-driven testing)

• automated gray-box test throughout all the process of

incremental integration of distributed systems (incremental

testing)

• automated regression test of new and updated component

builds (acceptance testing)

• on-the-fly automated test of suspicious components

triggered by the ops monitoring system (shift right testing)

13

Continuous 
Integration

Continuous 
Testing

Continuous 
Delivery

Continuous 
Development

Continuous 
Deployment

Ops
Monitoring

Change
Management



© 2017 – All rights reserved

SIMPLYTESTIFY core architecture

14

GUI 
Front end

Test run 
manager

Test 
executor 
arbiter

Test 
scheduler 
planner

Test 
generator

(distributed)
System 

Under Test

API
Front end

orchestrates

the robots

chooses the next

test sample from the

past test verdicts –

halts the test

session

generates

the test

suites

interacts with the SUT

and arbitrates the SUT

responses



© 2017 – All rights reserved

Conclusion
Test Automation: full, autonomous, intelligence-led, robotics, low-code, as a
Service

Black-box, contract-based, client-driven Test Automation

Gray-box Test Automation of complex and large-scale distributed system

Availability

• Platform as a Service on public cloud – self-provisioning, pay-as-you-go, 
low-cost – today AWS

• Can be licensed on private cloud

15



© 2017 – All rights reserved

Thanks

16

Libero MAESANO
libero.maesano@simple-eng.com



© 2017 – All rights reserved

Annexes
• Unit test of a terminal component

• Unit test of a non-terminal component

• Integration test of a distributed SUT

• Integration test of a distributed SUT (II) 

17



© 2017 – All rights reserved

Unit test of a terminal component 
(The SUT is initialized)

1. Optionally, the client sets the actual SUT state with the canned

SUT state (contract-based testing)

2. The client sends to the SUT the req stimulus request

3. The client starts the res timer for the res actual response and

waits - if res timeout, go to 6

4. The client receives the res actual response before the res

timeout, stops the res timer, compares the res actual

response with the res oracle response, and sets the res

response local verdict

5. Optionally, the client retrieves the actual SUT state, compares

it with the oracle SUT state, and sets the SUT state local

verdict (contract-based testing)

6. The executor/arbiter re-initializes the SUT and returns the

compound test verdict

18

SUT

test bedtest harness

client SUT

1) REQ

2) RES

1) req

2) res

res timeout

REQ

STATE

RES

STATE

Test scenario

timer(REQ,RES)

RES STATE

none none

Timeouts

Verdict

SUT

Test environment



© 2017 – All rights reserved

Unit test of a non-terminal component
(The SUT is initialized)

1. Optionally, the client sets the actual SUT state with the canned SUT state
(contract-based testing);

2. The client sends the reqX stimulus request to the SUT and notifies the stub

3. The client starts the resX timer and waits; if specified, the stub starts the
reqY timer and waits; if one of the timeouts raises, go to 7

4. The stub receives the reqY actual request before the reqY timeout, stops
the reqY timer, compares the reqY actual request with the reqY oracle
request, and sets the reqY message local verdict; optionally, the stub
retrieves the actual SUT state, compares it with the oracle SUT state, and
sets the SUT state local verdict (contract-based testing); if one of the local
verdicts is set to fail, go to 7

5. The stub sends the resY stimulus response to the SUT

6. The client receives the resX actual response before the resX timeout, stops
the resX timer, compares the resX actual response with the resX oracle
response, and sets the resX message local verdict;

7. Optionally, the client retrieves the actual SUT state, compares it with the
oracle SUT state, and sets the SUT state local verdict (contract-based
testing)

8. The executor/arbiter re-initializes the SUT and returns the compound test
verdict

19

client

stub

SUT

test harness test bed

1)reqX

2)reqY

3)resY

4)resX

resX timeout

reqY timeout

SUT

1) REQX

4) RESX

2) REQY

3) RESY

REQX

STATE

REQY

STATE

Test scenario

timer(REQX,RESX)

RESY

STATE

RESX

STATE

timer(REQX,REQY)

REQY STATE STATE RESX STATE

none none none none none

Test scenario

Timeouts

VerdictSUT

Test
environment



© 2017 – All rights reserved

Integration test of a distributed Sut
(The SUT - A and B - is initialized)
1. Optionally, the client sets the actual A state with the canned A

state, the proxy sets the actual B state with the canned B state
(contract-based testing)

2. The client sends the reqX stimulus request to A and notifies the
stub

3. The client waits for the resX actual response, and the proxy waits
for the reqY actual request - if one of the timeouts raises, go to 12

4. A sends reqY actual request to the proxy;
5. The proxy receives reqY actual request, compares it with the reqY

oracle request, and sets the reqY local test verdict - optionally, it
retrieves the A actual state, compares it with the A oracle state,
and sets the A state local verdict (contract-based testing); if one of
the local verdicts is set to fail, go to 12

6. The proxy sends reqY actual request to B and waits for the resY
actual response - if resY timeout raises, go to 12

7. B sends resY actual response to the proxy
8. The proxy receives resY actual response, compares it with the resY

oracle response, and sets the resY local test verdict - optionally, it
retrieves the B actual state, compares it with the B oracle state,
and sets the B state local verdict (contract-based testing); if one of
the local verdicts is set to fail, go to 12

9. The proxy sends the resY actual response to A
10. A sends the resX actual response to the client
11. The client receives the resX actual response, compares it with the

resX oracle response and sets the resX local test verdict -
optionally, it retrieves the A actual state, compares it with the A
oracle state, and sets the A state local verdict (contract-based
testing)

12. The executor/arbiter re-initializes the SUT and returns the
compound test verdict 20

test bed

A B

2)REQY

3)RESY

test harness

client

proxy

A

B

resX timeout

reqY timeout

resY timeout

1)reqX

2)reqY

4)resX

3’)resY

2’)reqY

3)resY

1)REQX

4)RESX

REQX

ASTATE

BSTATE

REQY

ASTATE

RESY

BSTATE

RESX

ASTATE

timeout(REQX,RESX)

timeout(REQX,REQY)

timeout(REQY,RESY)

REQY ASTATE RESY BSTATE RESX ASTATE

none none none none none none

Test scenario

Timeouts

Verdict

SUT

Test environment



© 2017 – All rights reserved

Integration test of a distributed Sut (II)

21

timeout(REQX,RESX)

timeout(REQX,REQY)

timeout(REQY,RESY)

timeout(REQY,REQZ)

REQY ASTATE REQZ BSTATE RESY BSTATE RESX ASTATE

none none none none none none none none

A B

2)REQY

5)RESY

1)REQX

6)RESX

3)REQZ

4)RESZ

REQX

ASTATE

BSTATE

REQY

ASTATE

RESY

BSTATE

RESX

ASTATE

REQZ

BSTATE

RESZ

test bedtest harness

client

proxy

A

B

resX timeout

reqY timeout

resY timeout

1)reqX

2)reqY

6)resX

5)resY
2’)reqY

4)resZ

stub

3)reqZ

5’)resY

reqZ timeout

Test scenario

Timeouts

Verdict

SUT

Test environment


